
Tabular:
Efficiently Building Efficient Indexes

Ziyi Yan, Mohammed Farouk Drira, Tianxun Hu, Tianzheng Wang

Concurrent data structure (index) is hard to build

• CPU/OS building blocks are hard to use
• Synchronization primitives: latches, atomics

• Locking protocol: pessimistic, optimistic, latch-free

• Error-prone programming experience: deadlocks, memory leaks

• Need expertise in many neighboring areas
• Memory management/Storage Devices/Networking

• Transaction semantics are easy to use
• A transaction only need single-threaded logic

• Concurrency control protocol guarantee ACID => Concurrent safety!

• DBMS engines have concurrency control but only for user transaction

Tabular: Efficiently Building Efficient Indexes 2

Re-use concurrency control to implement concurrent indexes

Transactional Concurrent Programming

Tabular: Efficiently Building Efficient Indexes 3

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

Tabular: Efficiently Building Efficient Indexes 3

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

Tabular: Efficiently Building Efficient Indexes 3

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

Tabular: Efficiently Building Efficient Indexes 3

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

• Update the record by rid
record.name = "tabular"
txn.Update(table, rid, record)

Tabular: Efficiently Building Efficient Indexes 3

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

• Update the record by rid
record.name = "tabular"
txn.Update(table, rid, record)

• Commit the transaction
txn.Commit()

Tabular: Efficiently Building Efficient Indexes 3

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

• Update the record by rid
record.name = "tabular"
txn.Update(table, rid, record)

• Commit the transaction
txn.Commit()

Tabular: Efficiently Building Efficient Indexes 3

Example: Atomically increment an integer

int COUNT;

void foo() {
 COUNT++;

}

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

• Update the record by rid
record.name = "tabular"
txn.Update(table, rid, record)

• Commit the transaction
txn.Commit()

Tabular: Efficiently Building Efficient Indexes 3

std::mutex mutex;

void foo_lock() {
 mutex.lock();
 COUNT++;
 mutex.unlock();

}

Example: Atomically increment an integer

int COUNT;

void foo() {
 COUNT++;

}

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

• Update the record by rid
record.name = "tabular"
txn.Update(table, rid, record)

• Commit the transaction
txn.Commit()

Tabular: Efficiently Building Efficient Indexes 3

std::mutex mutex;

void foo_lock() {
 mutex.lock();
 COUNT++;
 mutex.unlock();

}

Example: Atomically increment an integer

void foo_tabular() {
 txn = BeginTxn()
 cnt = txn.Read(tbl, cnt_id);
 cnt++;
 txn.Update(tbl, cnt_id, cnt);
 txn.Commit()

}

int COUNT;

void foo() {
 COUNT++;

}

Transactional Concurrent Programming

• Start a new transaction
txn = BeginTransaction()

• Insert a new record
new_record =
 { name: "hand-crafted" }
rid = txn.Insert(table, record)

• Read the record by rid
record = txn.Read(table, rid)

• Update the record by rid
record.name = "tabular"
txn.Update(table, rid, record)

• Commit the transaction
txn.Commit()

Tabular: Efficiently Building Efficient Indexes 3

std::mutex mutex;

void foo_lock() {
 mutex.lock();
 COUNT++;
 mutex.unlock();

}

Example: Atomically increment an integer

void foo_tabular() {
 txn = BeginTxn()
 cnt = txn.Read(tbl, cnt_id);
 cnt++;
 txn.Update(tbl, cnt_id, cnt);
 txn.Commit()

}

txn = BeginTransaction()

txn.Commit()

int COUNT;

void foo() {
 COUNT++;

}

B+-tree on transactional tables

• Each node is stored as a
record on table

• Each field in struct definition
of BTreeNode becomes a
column in schema definition

• Nodes are “connected” via
RIDs instead of pointers

Tabular: Efficiently Building Efficient Indexes 4

Tabular vs Hand-crafted B+-tree lookup()

Tabular: Efficiently Building Efficient Indexes 5

1 def BTree::lookup(Key k, Value *out_v):
2 n = root
3 while n is inner:
4 next = n.findChild(n, k)
5 n = next
6 *out_v = n.findValue(k)

Single-threaded code

Tabular vs Hand-crafted B+-tree lookup()

Tabular: Efficiently Building Efficient Indexes 5

1 def BTree::lookup(Key k, Value *out_v):
2 n = root
3 while n is inner:
4 next = n.findChild(n, k)
5 n = next
6 *out_v = n.findValue(k)

1 def BTree::lookup(Key k, Value *out_v):
 2 restart:
 3 epoch_enter()
 4 retry = false
 5 n = root
 6 ver = n.read_lock(retry)
 7 if retry or n != root: goto restart
 8 while n is inner:
 9 next = n.children[findChild(n, k)]
10 n.verify_read(ver, retry)
11 if retry: goto restart
12 ver_next = next.read_lock(retry)
13 if retry: goto restart
14 n = next
15 *out_v = n.findValue(k)
16 epoch_exit()

A

. . .
B

C

read_lock()

read_lock()

Retry path

Epoch manager
implementation …

Optimistic lock
implementation…

Single-threaded code Hand-crafted code using Optimistic Lock Coupling (OLC)

Tabular vs Hand-crafted B+-tree lookup()

Tabular: Efficiently Building Efficient Indexes 5

1 def BTree::lookup(Key k, Value *out_v):
2 n = root
3 while n is inner:
4 next = n.findChild(n, k)
5 n = next
6 *out_v = n.findValue(k)

1 def BTree::lookup(Key k, Value *out_v):
 2 restart:
 3 epoch_enter()
 4 retry = false
 5 n = root
 6 ver = n.read_lock(retry)
 7 if retry or n != root: goto restart
 8 while n is inner:
 9 next = n.children[findChild(n, k)]
10 n.verify_read(ver, retry)
11 if retry: goto restart
12 ver_next = next.read_lock(retry)
13 if retry: goto restart
14 n = next
15 *out_v = n.findValue(k)
16 epoch_exit()

A

. . .
B

C

read_lock()

read_lock()

Retry path

Epoch manager
implementation …

Optimistic lock
implementation…

1 def BTree::lookup(Key k, Value *out_v):
2 t = BeginTransaction()
3 n = t.Read(table, root_id)
4 while n is inner:
5 next_id = n.findChild(n, k)
6 n = t.Read(table, next_id)
7 *out_v = n.findValue(k)
8 t.Commit()

Single-threaded code Hand-crafted code using Optimistic Lock Coupling (OLC)

Tabular-based code

Tabular vs Hand-crafted B+-tree lookup()

Tabular: Efficiently Building Efficient Indexes 5

1 def BTree::lookup(Key k, Value *out_v):
2 n = root
3 while n is inner:
4 next = n.findChild(n, k)
5 n = next
6 *out_v = n.findValue(k)

1 def BTree::lookup(Key k, Value *out_v):
 2 restart:
 3 epoch_enter()
 4 retry = false
 5 n = root
 6 ver = n.read_lock(retry)
 7 if retry or n != root: goto restart
 8 while n is inner:
 9 next = n.children[findChild(n, k)]
10 n.verify_read(ver, retry)
11 if retry: goto restart
12 ver_next = next.read_lock(retry)
13 if retry: goto restart
14 n = next
15 *out_v = n.findValue(k)
16 epoch_exit()

A

. . .
B

C

read_lock()

read_lock()

Retry path

Epoch manager
implementation …

Optimistic lock
implementation…

1 def BTree::lookup(Key k, Value *out_v):
2 t = BeginTransaction()
3 n = t.Read(table, root_id)
4 while n is inner:
5 next_id = n.findChild(n, k)
6 n = t.Read(table, next_id)
7 *out_v = n.findValue(k)
8 t.Commit()

Easy to develop, debug and maintain Lots of branches, massive mental overhead

Single-threaded code Hand-crafted code using Optimistic Lock Coupling (OLC)

Tabular-based code

Tabular vs Hand-crafted B+-tree lookup()

Tabular: Efficiently Building Efficient Indexes 5

1 def BTree::lookup(Key k, Value *out_v):
2 n = root
3 while n is inner:
4 next = n.findChild(n, k)
5 n = next
6 *out_v = n.findValue(k)

1 def BTree::lookup(Key k, Value *out_v):
 2 restart:
 3 epoch_enter()
 4 retry = false
 5 n = root
 6 ver = n.read_lock(retry)
 7 if retry or n != root: goto restart
 8 while n is inner:
 9 next = n.children[findChild(n, k)]
10 n.verify_read(ver, retry)
11 if retry: goto restart
12 ver_next = next.read_lock(retry)
13 if retry: goto restart
14 n = next
15 *out_v = n.findValue(k)
16 epoch_exit()

A

. . .
B

C

read_lock()

read_lock()

Retry path

Epoch manager
implementation …

Optimistic lock
implementation…

1 def BTree::lookup(Key k, Value *out_v):
2 t = BeginTransaction()
3 n = t.Read(table, root_id)
4 while n is inner:
5 next_id = n.findChild(n, k)
6 n = t.Read(table, next_id)
7 *out_v = n.findValue(k)
8 t.Commit()

Easy to develop, debug and maintain Lots of branches, massive mental overhead

Single-threaded code Hand-crafted code using Optimistic Lock Coupling (OLC)

Tabular-based code
Measuring cognitive complexity [1]:

Tabular improve by 42%

[1]: G Ann Campbell. 2018. Cognitive complexity: An overview and evaluation. In Proceedings of the 2018 international conference on technical debt. 57–58.

Naïve objects-on-DB performance is bad

• Traditional concurrency control (CC) scheme incurs unnecessary overhead
• Optimistic CC (OCC) needs memory copying to transaction-local memory

• Multi-versioned CC (MVCC) stalls at pointer-chasing while accessing records

Tabular: Efficiently Building Efficient Indexes 6

Naïve objects-on-DB performance is bad

• Traditional concurrency control (CC) scheme incurs unnecessary overhead
• Optimistic CC (OCC) needs memory copying to transaction-local memory

• Multi-versioned CC (MVCC) stalls at pointer-chasing while accessing records

• Tabular (this work) adopts: (1) single-versioned OCC for direct record access
and (2) zero-copy reads and in-place updates via callback functions

Tabular: Efficiently Building Efficient Indexes 6

Naïve objects-on-DB cycle breakdowns

Tabular: Efficiently Building Efficient Indexes 7

• Unnecessary overhead: Memory copying, Pointer chasing

• They took nearly 50% of cycles

Tabular: Single-Versioned, Direct Record Access

Tabular: Efficiently Building Efficient Indexes 8

• RID is the offset
from base pointer
of flat memory

• Records are
stored directly on
the table instead
of referenced via
pointers

• It saves ~19-29%
cycles in B+-tree

Naïve-MVCC

Tabular: Single-Versioned, Direct Record Access

Tabular: Efficiently Building Efficient Indexes 8

• RID is the offset
from base pointer
of flat memory

• Records are
stored directly on
the table instead
of referenced via
pointers

• It saves ~19-29%
cycles in B+-tree

Naïve-MVCC Tabular

Tabular: Copy-based vs Callback-based interface

• OCC requires memory
copying from tables to
transactions

Tabular: Efficiently Building Efficient Indexes 9

copy-based
node = txn.Read(table, rid)
is_full = node.num_entries == MAX_ENTRIES

callback-based
var is_full: bool
def callback(record):
 is_full = node.num_entries == MAX_ENTRIES
txn.ReadCallback(table, rid, callback)

Tabular: Zero-Copy Record Access

• OCC requires memory
copying from tables to
transactions

• Observation: Record
access can be re-tried
cheaper compared to
memory copy

• User-defined callback
executes directly on the
records

• It saves ~20-31% cycles
in B+-tree

Tabular: Efficiently Building Efficient Indexes 10

Tabular: Zero-Copy Record Access

• OCC requires memory
copying from tables to
transactions

• Observation: Record
access can be re-tried
cheaper compared to
memory copy

• User-defined callback
executes directly on the
records

• It saves ~20-31% cycles
in B+-tree

Tabular: Efficiently Building Efficient Indexes 10

Tabular achieves competitive performance

• Workload: 100M of 8B-key B+-tree running 50% lookups and 50% updates

• Tabular performs at ~90% of Hand-crafted (Upper bound)

Tabular: Efficiently Building Efficient Indexes 11

= Zero-Copy +

= Single-Versioned +

= Optimistic
Lock Coupling (OLC)

Tabular: ACI(D) Guarantee

Tabular: Efficiently Building Efficient Indexes 12

Tabular: ACI(D) Guarantee

• Correctness
• Achieve serializability the same way as

OCC

• Need some tweaks in commit protocol
when UpdateCallback() is involved

Tabular: Efficiently Building Efficient Indexes 12

def UpdateCallback(table, rid, cb):
 write_set.Add(table, rid, cb)

Tabular: ACI(D) Guarantee

• Correctness
• Achieve serializability the same way as

OCC

• Need some tweaks in commit protocol
when UpdateCallback() is involved

• Transparent durability
• Optionally via a per-table knob

• Thread-local distributed logging and
recovery

Tabular: Efficiently Building Efficient Indexes 12

def UpdateCallback(table, rid, cb):
 write_set.Add(table, rid, cb)

Case study: Tabular-based Hash-table

• Buckets are
fixed-size
records in a
table

• Directory is
stored in a
separate table

• Multiple tables
as one data
structure is
supported
trivally

Tabular: Efficiently Building Efficient Indexes 13

Evaluation: YCSB-like index benchmarks

• 100M 8-byte keys and 8-byte values

• Index data structures
• B+-tree

• Hash-table (Extendible hashing)

• Adaptive Radix Tree (ART)

• Variants
• Hand-crafted, Naïve-MVCC,
Naïve-OCC, Tabular are as
aforementioned

• STD-LC: Applying Pessimistic Lock
Coupling using std::shared_mutex

• TBB-LC: Same as above but using
tbb::spin_rw_mutex

Tabular: Efficiently Building Efficient Indexes 14

Evaluation: TPC-C

• ERMIA is a memory-resident OLTP engine

• Replace Masstree with Tabular-based B+-tree in ERMIA

• End-to-end performance is comparable to the original

Tabular: Efficiently Building Efficient Indexes 15

Evaluation: Transparent Persistence

• In Persistent (No I/O), file operations are noops to show in-memory overhead

• Nearly zero overhead for lookups

• Less than 15% drop for updates

Tabular: Efficiently Building Efficient Indexes 16

Summary

• Tabular is a parallel programming library with transactional interfaces

• Data structures (not only indexes) can be modelled as tables to be
transparently concurrent and persistent

• Tabular-based indexes deliver competitive performance compared to their
hand-crafted counterparts with drastically lower programming complexity

• Code is available at https://github.com/sfu-dis/tabular

Tabular: Efficiently Building Efficient Indexes 17

https://github.com/sfu-dis/tabular
https://github.com/sfu-dis/tabular
https://github.com/sfu-dis/tabular

	Slide 1: Tabular: Efficiently Building Efficient Indexes
	Slide 2: Concurrent data structure (index) is hard to build
	Slide 3: Transactional Concurrent Programming
	Slide 4: Transactional Concurrent Programming
	Slide 5: Transactional Concurrent Programming
	Slide 6: Transactional Concurrent Programming
	Slide 7: Transactional Concurrent Programming
	Slide 8: Transactional Concurrent Programming
	Slide 9: Transactional Concurrent Programming
	Slide 10: Transactional Concurrent Programming
	Slide 11: Transactional Concurrent Programming
	Slide 12: Transactional Concurrent Programming
	Slide 13: B+-tree on transactional tables
	Slide 14: Tabular vs Hand-crafted B+-tree lookup()
	Slide 15: Tabular vs Hand-crafted B+-tree lookup()
	Slide 16: Tabular vs Hand-crafted B+-tree lookup()
	Slide 17: Tabular vs Hand-crafted B+-tree lookup()
	Slide 18: Tabular vs Hand-crafted B+-tree lookup()
	Slide 19: Naïve objects-on-DB performance is bad
	Slide 20: Naïve objects-on-DB performance is bad
	Slide 21: Naïve objects-on-DB cycle breakdowns
	Slide 22: Tabular: Single-Versioned, Direct Record Access
	Slide 23: Tabular: Single-Versioned, Direct Record Access
	Slide 24: Tabular: Copy-based vs Callback-based interface
	Slide 25: Tabular: Zero-Copy Record Access
	Slide 26: Tabular: Zero-Copy Record Access
	Slide 27: Tabular achieves competitive performance
	Slide 28: Tabular: ACI(D) Guarantee
	Slide 29: Tabular: ACI(D) Guarantee
	Slide 30: Tabular: ACI(D) Guarantee
	Slide 31: Case study: Tabular-based Hash-table
	Slide 32: Evaluation: YCSB-like index benchmarks
	Slide 33: Evaluation: TPC-C
	Slide 34: Evaluation: Transparent Persistence
	Slide 35: Summary

