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Concurrent data structure (index) is hard to build

• CPU/OS building blocks are hard to use
• Synchronization primitives: latches, atomics

• Locking protocol: pessimistic, optimistic, latch-free

• Error-prone programming experience: deadlocks, memory leaks

• Need expertise in many neighboring areas
• Memory management/Storage Devices/Networking

• Transaction semantics are easy to use
• A transaction only need single-threaded logic

• Concurrency control protocol guarantee ACID => Concurrent safety!

• DBMS engines have concurrency control but only for user transaction
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Re-use concurrency control to implement concurrent indexes



Transactional Concurrent Programming
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int COUNT;

void foo() {
 COUNT++;

}
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std::mutex mutex;

void foo_lock() {
 mutex.lock();
 COUNT++;
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}

Example: Atomically increment an integer
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std::mutex mutex;

void foo_lock() {
 mutex.lock();
 COUNT++;
 mutex.unlock();

}

Example: Atomically increment an integer

void foo_tabular() {
 txn = BeginTxn()
 cnt = txn.Read(tbl, cnt_id);
 cnt++;
 txn.Update(tbl, cnt_id, cnt);
 txn.Commit()

}

txn = BeginTransaction()

txn.Commit()

int COUNT;

void foo() {
 COUNT++;

}



B+-tree on transactional tables

• Each node is stored as a 
record on table

• Each field in struct definition 
of BTreeNode becomes a 
column in schema definition

• Nodes are “connected” via 
RIDs instead of pointers
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Tabular vs Hand-crafted B+-tree lookup()
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6   *out_v = n.findValue(k)
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Measuring cognitive complexity [1]: 

Tabular improve by 42%

[1]: G Ann Campbell. 2018. Cognitive complexity: An overview and evaluation. In Proceedings of the 2018 international conference on technical debt. 57–58.



Naïve objects-on-DB performance is bad

• Traditional concurrency control (CC) scheme incurs unnecessary overhead
• Optimistic CC (OCC) needs memory copying to transaction-local memory

• Multi-versioned CC (MVCC) stalls at pointer-chasing while accessing records
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• Tabular (this work) adopts: (1) single-versioned OCC for direct record access 
and (2) zero-copy reads and in-place updates via callback functions
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Naïve objects-on-DB cycle breakdowns
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• Unnecessary overhead: Memory copying, Pointer chasing

• They took nearly 50% of cycles



Tabular: Single-Versioned, Direct Record Access
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• RID is the offset 
from base pointer 
of flat memory

• Records are 
stored directly on 
the table instead 
of referenced via 
pointers

• It saves ~19-29% 
cycles in B+-tree

Naïve-MVCC
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Tabular: Copy-based vs Callback-based interface

• OCC requires memory 
copying from tables to 
transactions
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# copy-based
node = txn.Read(table, rid)
is_full = node.num_entries == MAX_ENTRIES

# callback-based
var is_full: bool
def callback(record):
  is_full = node.num_entries == MAX_ENTRIES
txn.ReadCallback(table, rid, callback)



Tabular: Zero-Copy Record Access

• OCC requires memory 
copying from tables to 
transactions

• Observation: Record 
access can be re-tried 
cheaper compared to 
memory copy

• User-defined callback 
executes directly on the 
records

• It saves ~20-31% cycles 
in B+-tree
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Tabular achieves competitive performance

• Workload: 100M of 8B-key B+-tree running 50% lookups and 50% updates

• Tabular performs at ~90% of Hand-crafted (Upper bound)
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= Zero-Copy +

= Single-Versioned +

= Optimistic
Lock Coupling (OLC)



Tabular: ACI(D) Guarantee
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• Correctness
• Achieve serializability the same way as 

OCC

• Need some tweaks in commit protocol 
when UpdateCallback() is involved
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def UpdateCallback(table, rid, cb):
 write_set.Add(table, rid, cb)



Tabular: ACI(D) Guarantee

• Correctness
• Achieve serializability the same way as 

OCC

• Need some tweaks in commit protocol 
when UpdateCallback() is involved

• Transparent durability
• Optionally via a per-table knob

• Thread-local distributed logging and 
recovery

Tabular: Efficiently Building Efficient Indexes 12

def UpdateCallback(table, rid, cb):
 write_set.Add(table, rid, cb)



Case study: Tabular-based Hash-table

• Buckets are 
fixed-size 
records in a 
table

• Directory is 
stored in a 
separate table

• Multiple tables 
as one data 
structure is 
supported 
trivally
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Evaluation: YCSB-like index benchmarks

• 100M 8-byte keys and 8-byte values

• Index data structures
• B+-tree

• Hash-table (Extendible hashing)

• Adaptive Radix Tree (ART)

• Variants
• Hand-crafted, Naïve-MVCC, 
Naïve-OCC, Tabular are as 
aforementioned

• STD-LC: Applying Pessimistic Lock 
Coupling using std::shared_mutex

• TBB-LC: Same as above but using 
tbb::spin_rw_mutex
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Evaluation: TPC-C

• ERMIA is a memory-resident OLTP engine

• Replace Masstree with Tabular-based B+-tree in ERMIA

• End-to-end performance is comparable to the original
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Evaluation: Transparent Persistence

• In Persistent (No I/O), file operations are noops to show in-memory overhead

• Nearly zero overhead for lookups

• Less than 15% drop for updates
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Summary

• Tabular is a parallel programming library with transactional interfaces

• Data structures (not only indexes) can be modelled as tables to be 
transparently concurrent and persistent

• Tabular-based indexes deliver competitive performance compared to their 
hand-crafted counterparts with drastically lower programming complexity

• Code is available at https://github.com/sfu-dis/tabular
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