
Tabular: Efficiently Building Efficient Indexes
Ziyi Yan, Mohammed Farouk Drira, Tianxun Hu, Tianzheng Wang
Simon Fraser University
https://github.com/sfu-dis/tabular

What? Concurrent indexes are hard to build, debug and maintain in varying compute/storage hierarchies.

Why? Error-prone synchronization primitives and locking protocol that overcomplicates memory management.

How? Re-use DBMS concurrency control to provide easy-to-use transactions to build concurrent indexes.

Consider B+-tree on transactional tables Naïve approaches are too slow

Major overheads in traditional CC: Pointer chasing and Memory Copying

Tabular #1: Direct-access 1V-OCC

Dual-socket server:
• 2 x 24-core Intel Xeon Gold 6252 @ 2.10GHz
• 384GB DRAM

YCSB-like index benchmark:

• 100M 8-byte keys and 8-byte values
• Indexes: B+-tree, Hash-table and ART (not shown here)
End-to-end TPC-C benchmark:
• Reach ∼90% throughput of original ERMIA

Evaluation: YCSB-like index benchmark and End-to-end TPC-C benchmark

RID n_keys is_leaf right_child kvs

0 10 False 1 ...

1 8 False 2 ...

2 4 True INVALID_RID ...

...

(c) Table storing
BTreeNode objects(a) Logical view

. . .

A

B

C

(b) C/C++ struct/class
definition

struct BTreeNode {
 int capacity;
 int n_keys;
 bool is_leaf;
 int lock;
 BTreeNode
 *right_child;
 KVPair kvs[16];
 };

Map struct field to column

Tabular #2: Zero-copy Read/Update

Naïve-MVCC Tabular

	Slide 1

