
Pessimistic Optimistic

Centralized
(Test-and-)test-and-set,

traditional r/w locks
Optimistic locks

Queue-
based

MCS locks
OptiQL

Best of both

OptiQL: Robust Optimistic Locking for Memory-Optimized Indexes
Ge Shi, Ziyi Yan, Tianzheng Wang
Simon Fraser University
https://github.com/sfu-dis/optiql

[SIGMOD 2024]

What? Optimistic locks are fast for read-mostly workloads, but not robust, i.e., can collapse under contention.

Why? Centralized design that necessitates writers to spin on one memory word.

How? Queue up writers and let them spin on a local memory location, while supporting optimistic reads.

Memory-Optimized Indexes Prior Optimistic Locks: Fast, not Robust

• Indexes (e.g., B+-trees) need to be thread-safe

• Fine-grained reader-writer locking* (one lock per tree node)

• Need optimistic lock coupling during traversal and SMOs

* “Lock” == latch here in DBMS literature

Culprit: Centralized Spinning Lock Design Tradeoffs

OptiQL = Queue-based (MCS-like) Writers + Optimistic Readers
• Writer:

• XCHG to add itself to the queue (a,b)

• Pass along version number to next node

• Reader:

• Lock: only read lock word

• Unlock: check version number

• Opportunistic read (d,e,f)

 to alleviate starvation

Performance

Dual-socket server:
• 2 x 20-core (80 HT) Intel

Xeon Gold 6242R, 3.1GHz
• 387GB DRAM

Microbenchmarks:

• B+-tree and ART (not

shown here)

• 80% updates, 20% reads

• Self-similar distribution

(skew factor of 0.2)

Desirable:
(1) Fast Read, (2) Robust Against Contention, (3) Fair,
(4) Compact, (5) Easy-to-Adopt to Existing Index Locking

• TODOs:

• No robustness – give fig 1 on paper

Optimistic Latch Coupling with OptiQL

Writers issue compare-and-swap (CAS) and spin on the lock

• CAS doesn’t guarantee fairness or latency

• Lots of cycles are wasted on spinning

• Cache-coherency traffic floods interconnect

• Optimistic over Pessimistic for cheap read

• Queue-based over Centralized for local spinning and
First-Come-First-Serve fairness (for writers)

• Reader: No changes in interface

• Writer: Slight changes to accommodate lock queue

Lock Coupling with OptiQL in B+-Tree Insertion

8-byte version

threads

lock word

CAS() CAS() CAS()… ?

tail node pointer

granted? next ? nil

Centralized Lock Queue-based MCS Lock

… …

…

OptiQL Structure

	Slide 1

